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Abstract

Throughout human civilisation, mathematicians have sought to expand the
natural numbers into new, unexplored territories. From the introduction of
0 to the discovery of irrationals, we have today a number system C which can
not only express continuous quantities, but also guarantees once unimagin-
able solutions to vast arrays of equations. But is there another way to get
here? Can we rebuild such a versatile yet robust number system from com-
pletely different foundations? In this report, we introduce the p-adic number
system. From humble beginnings in the p-adic integers, we draw upon tech-
niques in analysis, number theory and field theory to create increasingly
powerful and interesting systems. At first glance, things may seem unintu-
itive. Incrementing numbers does not make them larger. Infinity is closer
to zero than infinite strings of digits. So what can we learn from this world
of unusual yet truly fascinating properties which seem to have no place in
our universe? To find out, let us embark on a great adventure to construct
something truly magical, something which inspires awe and wonder in ad-
venturers all over the world, something of which mathematicians once could
have only dreamed : Cp.
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1 Introduction

We begin with a purely algebraic definition of the p-adic integers Zp as in-
teger sequences, and identify p-adic analogues to elements of Z. Then we
introduce the p-adic norm. An advantage of this algebraic perspective is
that the ring Zp is initially independent of the p-adic valuation. After this,
we shift to a more analytic perspective by directly defining Qp as a com-
pletion of Q under the p-adic norm. We do this to highlight the analagous
nature of R, the completion of Q under the euclidean norm, to Qp. In fact,
we find that Qp is a subfield of R - we take advantage of this by introducing
a more convenient and familiar notation for the p-adic numbers by writing
each p-adic element as its analogous number in R.

Here, we take a break in constructing fields by introducing perhaps the most
important and fundamental result regarding the p-adics - Hensel’s lemma.
This lemma allows us to prove the existence of solutions in Qp by finding
solutions in Z mod p. Using this powerful tool, we create a way to easily
visualise how p-adic numbers interact, explicitly constructing the sequences
we will have discussed throughout the report. This gives a comfortable
transition into finite field extensions of Qp, which heavily takes advantage
of results derived from Hensel’s lemma. Here, our primary goal will be to
extend the p-adic norm to arbitrary field extensions, hopefully allowing us
to create a strong foundation for the algebraic closure of Qp, that is Qp.
From here, we can once again take the completion of Qp to construct Cp,
which is the primary focus of the report. Indeed, the p-adic norm extends
to Cp in the usual way we know from analysis.

The remainder of the report will focus on exploring familiar functions in
Cp by viewing them as series expansions. We will discover some of the
unconventional properties regarding convergence, and in particular, explore
how log and exp behave differently in the complex p-adics.
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2 P-adic Completion of Integers - Zp
First, we introduce the p-adic integers from the algebraic perspective. Though
it is worthwhile to keep this foundation in mind, we will be using a more
analytic definition from section 3 onwards as it is more intuitive to work
with.

Definition 2.1. The positive p-adic integers Zp are sequences

{(xi)i∈N : xi ∈ Z/piZ}

equipped with the set of projective maps, πmn : Z/pmZ → Z/pnZ for m ≥ n
(defined by sending x ∈ Z/pmZ to x modulo n). Let πmn (xm) = xn for each
m ≥ n.

We can see that the positive p-adic integers are a subset of {(xi)i∈N :
xi ∈ Z/piZ}. In fact, if we define addition and multiplication pointwise,
they form a subring. At first glance, it may seem that this construction of
Zp has very little to do with Z. But upon some investigation, it is easy to
see that

Theorem 2.1. Z is isomorphic to the set of stable sequences in Zp.

Proof. Consider x ∈ Z. Since the representation of x in base p is unique, we
can uniquely write

x = x1 + x2p+ x3p
2 + x4p

3 + ...+ xn+1p
n

with 0 ≤ xi < pi−1. Then in Zp, x is equivalent to a sequence (yi) with
yn+1 = xn+1. So from the definition of the projective maps, it follows that

(yi) = x1(1, 1, 1, ...)+x2(0, 1, 1, ...)+x3(0, 0, 1, ...)+...+xn+1(0, 0..., 0, 1, 1, ...)

which is constant after the nth coordinate. So each element in Z corresponds
to one and only one stable sequence in Zp.

By convention, we can represent stable elements of Zp by their cor-
responding element in Z. Divergent elements of Zp can be represented
by infinite strings of digits in base p. For example, in Z5 we can write
(4, 24, 124, 624, ...) as 4444.... or ....4444. It will soon be apparent that the
latter representation is much more useful for our purposes.

Definition 2.2. Define the valuation ν(xi)i∈N = k, where k is the largest
integer such that xk = 0, or 0 if no such integer exists. Then the p-adic
norm |x|p = 1/pν(x) and set |(0, 0, ...)|p = 0.
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Theorem 2.2. |.|p is non-archimedean, that is, |x+ y|p ≤ max(|x|p, |y|p).

Proof. If |x|p 6= |y|p, then let ν(x) = b and ν(y) = a with b > a. Then
ν(x + y) = a since the addition of x to y does not affect the first a + 1
coordinates of y. Hence |x+ y|p = |y|p ≤ max(|x|p, |y|p).

If |x|p = |y|p, then let ν(x) = ν(y) = a. Then ν(x+ y) ≥ a since the first a
coordinates of x+ y will still be 0. Hence |x+ y|p ≤ max(|x|p, |y|p).

Theorem 2.3. Z under the p-adic norm is not complete for all prime p.

Proof. For instance, take the p-adic sequence x = (1, 1 + p, 1 + p + p2, ...).
Now, since (p, p2, p3, ...) converges to 0, we have

lim
n→∞

(p− 1)
n∑
i=0

pi = lim
n→∞

pn − 1

= lim
n→∞

−1

= −1

And it follows that we actually have x = 1/(1−p) /∈ Z but 1/(1−p) ∈ Zp.

The p-adic number system reveals a different way to think about mag-
nitude. Though it is outside the scope of this report, one can prove that
there are only 3 possible ways to define the size of integers such that the
norm axioms are satisfied: the trivial norm which sets the size of all non-zero
integers to a constant, the euclidean norm which we all know and love, and
the p-adic norm.

Under this new notion of magnitude, the “size” of integers converges to-
wards 0 as powers of p in their prime factorisations increase. One immediate
consequence of this is that infinite strings of digits are no longer arbitrarily
large (nor small for that matter). For example, in Z2, |...01010|p = 1/2
and |...11001100|p = 1/4. It is now also apparent that the leading digits of
numbers are no longer the most significant. In Z3, a number with last digit
2, for example 122110202, will always have size 1 regardless of the digits
preceding 2. There is also no clear way to increment numbers such that
they gradually increase in magnitude. Every value of the p-adic norm has
infinite numbers. We will be discovering many more interesting properties
which arise from this redefinition of magnitude.
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3 Field of Fractions - Qp

From here, we could define Qp by taking the field of fractions of Zp. However,
it is not clear that Qp should actually be complete. We will proceed with
a more intuitive construction of the p-adic rationals by taking a completion
of Q directly. But before this, we should extend the definition of the p-adic
valuation to Q, so that we can clarify the definition of the p-adic norm in
this new perspective.

Definition 3.1. For prime p, let q = pk ab ∈ Q, with k, a, b ∈ Z and a, b, p
coprime. Then define νp(q) = k.

We know from elementary number theory that the representation of q
as pk ab is unique. Indeed, from this definition we can extend the p-adic
norm by setting |q|p = 1/p−k. We know that νp and ν from Definition 2.2
are identical over the integers, so our reformulation of the p-adic norm is
consistent with our existing definition. This fact is obvious if we represent
stable sequences in Zp as their corresponding integer.

Now we can demonstrate the incompleteness of Q under the p-adic norm.
But first, let us introduce an important result which will be explored and
applied in greater detail in chapter 4.

Lemma 3.1. Let P (x) be a polynomial with coefficients in Q. If P (αn) ≡ 0
mod pn for some n ∈ Z and P ′(αn) 6≡ 0 mod p, then there exists αn+1 ∈ Q
such that αn ≡ αn+1 mod pn and P (αn+1) = 0 mod pn+1.

Proof. Suppose P (αn) ≡ 0 mod p with P ′(αn) 6≡ 0 mod p. Then if P (αn) ≡
0 mod pn, we want to find k such that

P (αn+1) := P (αn + kpn) ≡ 0 mod pn+1

So representing P (αn + kpn) as a power series in terms of kpn,

∞∑
i=0

P (i)(αn)

i!
(kpn)k ≡ 0 mod pn+1

P (αn) + P ′(αn)kpn ≡ 0 mod pn+1

q + P ′(αn)k ≡ 0 mod pn

k ≡ −q
P ′(αn)

mod pn

Indeed, with this choice of k, αn+1 satisfies P (αn+1) ≡ 0 mod pn+1 and
αn+1 ≡ αn mod pn.
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This is Hensel’s lemma, which, for our purposes in this chapter, is use-
ful in constructing p-adic sequences in Q which “get increasingly close” to
polynomial solutions (this is why we used seemingly arbitrary indicies on our
variables!). Indeed, by considering polynomials with no solution in Q, we
can construct non-convergent Cauchy sequences. This gives us the following
result.

Theorem 3.2. Q is not complete under the p-adic norm for all prime p.

Proof. We will first consider the case where p 6= 2. Let

a =

{
1 + p if 1 + p is non-square

1 + 2p if 1 + p is square

Then a is a non-square quadratic residue mod p. Now, let x1 be a solution
to x2 − a ≡ 0 mod p. By Hensel’s lemma, x2 − a ≡ 0 mod p2 must also
have a solution x2 where x2 ≡ x1 mod p. In general, given a solution xn to
x2 − a ≡ 0 mod pn, we can find a solution xn+1 to x2 − a ≡ 0 mod pn+1

with xn ≡ xn+1 mod pn.

So we can inductively define a sequence (xn)n∈N such that xn ≡ a mod pn

and xn+1 ≡ xn mod pn (so xn+1 − xn is a multiple of pn). Indeed, this is
Cauchy since for m ≥ n ≥ N , we have

|xm−xn| ≤ max(|xm−xm−1|, ..., |xn+1−xn|) = |xk+1−xk| ≤ p−k ≤ p−N → 0

for some n ≤ k ≤ m. But by Hensel’s lemma, the limit of this sequence
must be a solution to x2 − a = 0, which is a contradiction since no such
number exists in Q.

For the case p = 2, we have that x1 := 1 is a solution to x3 − 3 mod 2. By
a similar construction to above, we can create a Cauchy sequence (xn)n∈N
where xn ≡ xn+1 mod 2n, which, if convergent, must have a limit which
is a solution in Q to x3 − 3 (the first few numbers in this sequence are
(1, 3, 3, 11, 27, ...)). This similarly yields a contradiction to the statement
that Q is complete since no such solution exists in Q.

We remark that the proof for p 6= 2 does not work in the case p = 2
because given the initial quadratic solution x1 = 1, we have d

dx(x2−x1) ≡ 0
mod 2, which violates a condition of Hensel’s lemma.

As a concrete example, in Q3, (1, 4, 13, 13, 175, ...) is such a sequence which
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satisfies the above construction. The fact that Q is incomplete under the
p-adic norm should come as no surprise - the construction given above
is analagous to constructing a Cauchy sequence in Q under the euclidean
norm which approaches an irrational number. Here, we invoke the power of
Hensel’s lemma to let us construct increasingly close approximations.

Definition 3.2. Define Qp to be C/N , where C is the set of Cauchy se-
quences in Q under the p-adic norm, and N is the set of null sequences.

To identify an element of Q in Qp, we can apply the map x 7→ (x, x, x, ...).

Indeed, this is injective since for x 6= y, we have (x, x, x, ...)− (y, y, y, ...) =
(x− y, x− y, x− y, ...) /∈ N . Since the values of the p-adic norm are dis-
crete, any non-null sequence (xn) ∈ C must be eventually stationary. And
for (xn) ∈ Qp,

lim
n→∞

|xn| → pk

for some k ∈ Z.

Definition 3.3. For (xn) ∈ Qp, let |(xn)| = limn→∞ |xn|.

Note that eventually, for non-zero sequences, |xn| = limn→∞ |xn|. Also,
this norm is well defined since any sequences in the equivalence class of (xn)
differ by a sequence which is eventually null, so they either will eventually
be stationary at the same point, or are both null sequences.

As an example, consider the sequence (xn) = (1, 4, 13, 13, 175, ...). Clearly,
since by construction xi 6= 0 mod p for all i ∈ N, we have that (xn) = 1.

Theorem 3.3. {(x) : x ∈ Q} is dense in Qp. In other words, Q is dense in
Qp.

Proof. Let ε > 0. For any non-null (xn) ∈ Qp, there exists some K after
which
(xn − xK)n∈N is stationary and terms in (xn)n∈N differ by no more than ε.
Then for all n ≥ K,

|xn − xK | := r < ε

So |(xn − xK)n∈N| = limn→∞ |xn − xK | = r < ε by definition of the p-adic
norm. Thus for any arbitrary neighbourhood of (xn), there exists a K such
that (xK) ∈ Q can be found in it. For null (xn) ∈ Qp, we can find (0) in

any neighbourhood around (xn).
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This proof is more concise than the one given in Goueva’s textbook, as it
uses the property that non-null Cauchy sequences are eventually stationary
under the p-adic norm.

Theorem 3.4. Qp is a field.

Proof. We will show that non-zero elements have multiplicative inverses.
For (xn) /∈ N , we can define (yn) such that

yi =

{
xi if xi 6= 0

1 if xi = 0

. Then (1/yn) is well defined. Since (xn) is not null, we must have xi = yi
(so xi−yi = 0) for all i > k for some k. So since (xn−yn) = (xn)−(yn) ∈ N ,
we have (xn) ∈ (yn). Then (xn)(1/yn) ∈ (1).

This result enables us to talk about field extensions of Qp by adjoining
solutions to polynomials. Since a primary goal of this report is to construct
a field with the property of algebraic closure, the fact that Qp is already a
field is particularly important (and convenient) since we can directly take
the algebraic closure of Qp and work from there.

4 Hensel’s Lemma and Applications

In this section, we will take a break from field construction and exhibit the
potential of Hensel’s Lemma, introducing a way to compute p-adic sequences
and find concrete solutions to p-adic polynomials. This will hopefully en-
hance the reader’s intuition in exploring this unfamiliar number system.

4.1 Hensel’s Lemma

We have used Hensel’s lemma as a tool to approximate solutions to poly-
nomials using rational sequences. This allowed us to demonstrate the in-
completeness of Q. However, a much more powerful consequence of Hensel’s
lemma is that it enables us to immediately extrapolate solutions to poly-
nomials in Qp from solutions in Q mod p. This gives us a famous theorem
derived from Hensel’s lemma, which is arguably more significant in the study
of p-adics than Hensel’s lemma itself.

Lemma 4.1. Let P (x) be a polynomial with coefficients in Qp. If P (α1) ≡ 0
mod p and P ′(α1) 6≡ 0 mod p, then there exists α ∈ Qp such that α ≡ α1

mod p and P (α) = 0.
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Proof. Suppose P (α1) ≡ 0 mod p with P ′(α1) 6≡ 0 mod p. Then if P (αn) ≡
0 mod pn, from Hensel’s lemma we can find αn+1 satisfying P (αn+1) ≡ 0
mod pn+1 and αn+1 ≡ αn mod pn. Then by induction, we can choose a
sequence α1, α2, ... satisfying the above relations. This sequence is Cauchy
(by a similar proof to the one used for Theorem 3.2), so it has some limit α
such that P (α) = 0 (by continuity) and P (α) ≡ α1 mod p.

For example, we directly observe that since x2 − 7 ≡ 0 mod 3, we must
have

√
7 ∈ Q3. In fact, if a is a quadratic residue mod p, then by Hensel’s

lemma x2 − a = 0 must have a solution in Qp. However, as powerful as
Hensel’s lemma is, polynomial solutions in Qp are still predicated on finding
solutions in Q mod p. As a consequence, many polynomials with solutions in
R do not have solutions in Qp. For example, we can say that since x3− 1/4
has no solutions mod 7, the cube root of 1/4 does not exist in Q7.

Theorem 4.2. For any prime p and positive integer m such that p - m,
there exists a primitive m-th root of unity in Qp iff m|p− 1.

Proof. By Fermat’s little theorem, we have that for any a ∈ Zp, ap−1 ≡ 1
mod p. If m divides p − 1, then (a(p−1)/m)m ≡ 1 mod p, so there exists a
solution to the polynomial xm − 1 ≡ 0 mod p. Then by Hensel’s lemma,
m
√
x ∈ Zp ⊂ Qp.

Conversely, if there exists a ∈ Qp such that a is a primitive root of unity,
then am ≡ 1 mod p. But if m - p − 1, then there exists a solution to
rm + s(p − 1) = gcd(m, p − 1) < m. But this implies that agcd(m,p−1) ≡ 1
mod p, which is a contradiction since then agcd(m,p−1) = 1 has a solution in
Qp with gcd(m, p−1) < m, thus a is not a primitive m−th root of unity.

For instance, consider p = 7 and m = 3. Theorem 2.2 states that there
must exist a primitive cube root of unity. Indeed, 23 ≡ 1 mod 7, so using
Hensel’s lemma we find that the sequence (2, 30, 324, 1353, ...) converges to
the primitive cube root of 3 in Q7.

Theorem 4.3. The p− 1-th roots of unity in Qp form a cyclic group.

Proof. For each a ∈ Zp/pZp with a 6≡ 0 mod p, we have that ap−1 ≡ 1
mod p. This gives us p− 1 distinct p− 1-th roots of unity in Qp by Hensel’s
lemma. We verify that

1 = 1p−1 ∈ Qp

ap−1 = 1⇒ a1−p = 1
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ap−1 = 1 and bp−1 = 1⇒ (ab)p−1 = 1

So the p−1-th roots of unity in Qp form a cyclic subgroup of the multiplica-
tive group Qp.

We will conclude this subsection by leaving the reader with the intuition
that just as R can be viewed as a “union” of all the Qp, so too can Q be
viewed as an “intersection” of all the Qp. This general idea is called the local-
global principle, and has various applications in algebraic number theory.
Although this insight is important for developing intuition, its applications
are not a focus of this report, so we will only discuss it superficially.

Theorem 4.4. x ∈ Q is a nonnegative square iff it is a square in Qp for
every prime p.

Proof. Since Q ⊆ Qp, it is clear that if x = a2 ∈ Q is a square, then
x = a2 ∈ Qp is also a square. Conversely, if x is a square in Qp for every p,
then x = a2 for some a ∈ Qp. Hence νp(x) = 2νp(a), so νp(x) is even for all
primes p. Hence we can write x =

∏∞
i (pi)

2n with n ∈ Z, so x is a square in
Q.

Corollary 4.4.1. For n ≥ 1, x = (a1)
2 + ...+ (an)2 ∈ Q iff x = (a1)

2 + ...+
(an)2 ∈ Qp for any p.

Proof. Suppose x is the sum of squares in Qp for all p. So let x = x1+...+xn,
where xi is square in Qp for all i and all p. Then xi is also square in Q for
all i, so x is also the sum of squares in Q. The converse is the similar.

4.2 Constructing the Sequences

So far, we have developed an abstract intuition of what it means to complete
Q under the p-adic norm. But what do these “new” numbers look like? As
an example, let us construct the primitive 4th root of unity ζ4 in Q5 using
Hensel’s lemma.

We will construct the sequence (x1, x2, ...) ∈ Q5 corresponding to ζ4. First,
we note that 24 ≡ 1 mod 5. Hensel’s lemma guarantees the existence of
x2, where x2 ≡ x1 mod 5 and (x2)

4 − 1 ≡ 0 mod 25. There are 5 numbers
mod 25 which satisfy the first condition, namely 2, 7, 12, 17 and 22. We
check that 24 6≡ 1 mod 25, but 74 ≡ 1 mod 25, so x2 = 7. Again, there are
5 numbers which satisfy x3 ≡ x2 mod 25, namely 7, 32, 57, 82 and 107. We
can similarly confirm that x3 = 57 since 574 ≡ 1 mod 125.
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This algorithm is clearly tedious and rather unenlightening. As mathemati-
cians, we can automate this process using a simple Python script (given in
the appendix).

By calling lift(2,5,lambda x:x**4-1,10), we obtain as the following se-
quence as output:

(2, 7, 57, 182, 2057, 14557, 45807, 280182, 280182, 6139557, 25670807, ...)

In base 5, this is

(2, 12, 212, 1212, 31212, 431212, 2431212, 32431212, 32431212, 3032431212, ...)

We note that a number a1...an represented in base k is essentially of the form
k0an + k1an−1 + k2an−1 + ..., which is a more convenient form to interpret
p-adic numbers.

Using this, we can directly compute ζ2 = (ζ4)
2 = −1 as a sequence in

Q5. By squaring each number in the sequence representing ζ4, we obtain
that

−1 = (4, 144, 100444, 2024444, 2040344444, 413221444444, 13244124444444, ...).

In other words, −1 = limn→∞ 5n− 1. Indeed, we verify that | limn→∞ 5n| =
limn→∞

1
pn = 0.

Let us try a less trivial example. Theorem 3.2 guarantees the existence
of ζ7 in Q29. Using our algorithm, we obtain in base 29 (with A,B,C,...
representing 10, 11, 12, ...), by lifting the solution 77 − 1 ≡ 0 mod 29,

ζ7 = (7,M7, 5M7, 35M7, 335M7, A335M7, LA335M7, 7LA335M7, ...)

Another 7th root ζ ′7 can be obtained by lifting 207 − 1 ≡ 0 mod 29:

ζ ′7 = (K,JK,DJK,KDJK, 5KDJK, J5KDJK, J5KDJK, 70J5KDJK, ...)

By theorem 3.2, we can generate all the 7th roots with ζ7. Indeed, we
observe that (ζ7)

2 = ζ ′7.
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5 Finite Field Extensions - Qp[α]

Now, we have the tools to begin exploring finite extensions of Qp. Instead
of delving into general field theoretic results, this section will be devoted to
analysing some of the interesting properties which are unique to finite exten-
sions of Qp. Then we will focus on extending the p-adic norm to extensions
of Qp. Beyond this, much of our knowledge about the structure of Qp[α]
comes from field theory and Galois theory, which, while very important, will
not be the main focus of this report.

5.1 Extending Qp

First, let us begin by exploring the finite field extensions of Qp.

Theorem 5.1. For all n ∈ N with n > 1, n
√
p /∈ Qp.

Proof. If there exists x ∈ Qp such that xn = p, then xn ≡ p ≡ 0 mod p.
But using Hensel’s lemma, this clearly lifts to a solution x = 0, which is a
contradiction since p 6= 0.

Now, recalling the Lengdre symbol
(
a
p

)
=


0 if a = 0

1 if a 6= 0 is a square residue mod p

−1 otherwise

:

Corollary 5.1.1. For a ∈ Q, we have
√
a ∈ Qp iff

(
a
p

)
= 1.

Proof. We already know that
√
a /∈ Qp if

(
a
p

)
= −1 and

√
a ∈ Qp if

(
a
p

)
= 1.

From the above theorem, we have that
√
a /∈ Qp if

(
a
p

)
= 0.

To start with a simple example, consider the roots of x2 − x − 1 in Q3

and Q5. We have that
√

5 ∈ Q3 since
(
3
5

)
= 1, but

√
5 /∈ Q5. The roots of

x2 − x − 1 are 1±
√
5

2 , so it has 2 roots in Q3 and no roots in Q5, however

we can construct a minimal quadratic extension Q5[
√

5] to incorporate the
roots of x2−x−1. So this raises the question: since there are infinitely many
non-solutions to x2 ≡ a mod 5, does this mean there are infinitely many
quadratic extensions of Q5? This assumption turns out to be incorrect:

Theorem 5.2. For p ≥ 3, there are exactly 3 quadratic extensions of Qp.
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Proof. I claim that Qp[
√
a],Qp[

√
p] and Qp[

√
ap], where a is a non-residue

mod p (existence of a guaranteed by p ≥ 2), are precisely the 3 quadratic
extensions. First, recall that

√
a,
√
p /∈ Qp, so they form a non-trivial field

extension.

For non-residues a, b, we have that

x+ y
√
a ∈ Qp[

√
a] = x+

y
√
a√
b

√
b

with x, y ∈ Qp. Indeed, if b−1 ≡ x2 mod p, then b ≡ x−2 mod p, so
contrapositively, if b is a non-residue, b−1 is also a non-residue. And(

ab−1

p

)
=

(
a

p

)(
b−1

p

)
= (−1)2 = 1,

so we have y
√
a√
b
∈ Qp. Hence Qp[

√
a] ⊆ Qp[

√
b], so symmetrically,

Qp[
√
a] = Qp[

√
b]

thus our choice of a does not matter.

Now, consider arbitrary field extension K = Qp[
√
pna]. If a is a quadratic

residue, then K = Qp[
√
pn], so n must be odd and we have K = Qp[

√
p]. If

a is a quadratic non-residue, then if n is even we have K = Qp[
√
a], and if

n is odd we have K = Qp[
√
pa]. But since we showed that the choice of a

does not matter, these are the only 3 quadratic extensions.

It follows that the only quadratic extensions of Q3 are Q3[
√

2], Q3[
√

3]
and Q3[

√
6]. It follows that any root of the polynomial x2 + bx + c can be

written in the form x+ y
√

2, x+ y
√

3 or x+ y
√

6, where x, y ∈ Q3.

For example, the roots of x2 − 5x+ 3 are

5±
√

13

2
=

5

2
±
√

13

2
√

2

√
2

with
√
13

2
√
2
∈ Q3.

As a special case, we can study the cubic extensions of Q3. Since 13 ≡ 1
mod 3 and 23 ≡ 2 mod 3, we have 3

√
2,3
√

1 ∈ Q3. So any non-trivial cubic
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extension must be of the form Q3[
3
√

3k]. And since Q3[
3
√

3] is equivalent
to Q3[

3
√

9], this gives us the single cubic extension Q3[
3
√

3].

5.2 Extending |.|p
Whenever we add elements to our p-adic algebraic structure, we must also
extend the definition of the p-adic norm so that we can create an appropriate
metric on our new set. We did this when we extended the definition of the
p-adic norm from Zp to Qp. Here, we have the more complicated task of
extending the p-adic norm |.|p to finite field extensions of Qp in the most
natural way possible. First, let us investigate a seemingly natural extension
of non-archimedean norms to field extensions. The construction given below
can be viewed as a counterexample to the misconception that any field norm
naturally extends the p-adic valuation.

Definition 5.1. Let V be a finite dimensional vector space over a field F .
A field norm on V is a map ||.|| satisfying, for a ∈ F and x ∈ V ,

||x|| = 0 iff x = 0

||ax|| = |a| · ||x||
||x+ y|| ≤ max ||x||, ||y||

Naturally, we can envision field extensions over Qp as vector spaces
equipped with a norm. For example, we can write elements in

Q3[
√

2] = {x+ y
√

2 : x, y ∈ Q3}

as (x, y), and clearly we want any norm on Q3[
√

2] to satisfy ||(x, 0)|| = |x|,
so that our norm “extends” the p-adic valuation. So consider the norm
defined by ||(x, y)|| =

√
|x|2 + 2|y|2. As an example, we would have

||(6, 2)|| =
√
|6|2 + 2|2|2 = 2

√
11

Lemma 5.3. The norm on Qp[α] = {(x, y) := x + yα : x, y ∈ Qp} defined
by ||(x, y)|| =

√
|x|2 + |αy|2 is a field norm.

Proof. We will prove the condition ||ax|| = |a| · ||x||. The other conditions
follow immediately from the properties of a norm on a vector space.
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For a ∈ Qp and x = (x1, x2) ∈ Qp[α], we have

||ax|| = ||(ax1, ax2)||

=
√
|ax1|2 + |αax2|2

= |a|
√
|x1|2 + |αx2|2

= |a| · ||x||

Although this particular extension of |.|p satisfies the definitions of a
field norm, its properties do not naturally extend the notion of an “absolute
value” in a p-adic field. In particular, we want our extended p-adic norm
to be well behaved with respect to multiplication. For example, in Q3[

√
2]

with the norm described above,

||3 + 2
√

2|| = 2
√

11 6= 3 = ||1 +
√

2||2

So in general, ||xy|| 6= ||x|| · ||y||. We essentially want a way to define ||α||
in Qp[α] such that ||xy|| = ||x|| · ||y|| for all x, y ∈ Qp[α]. This motivates the
following definition:

Definition 5.2. [3] Let K = F (α) be a finite extension of F and suppose α
has monic irreducible polynomial f(x) = xn + ...+ a0 for ai ∈ F . The norm
of α from K to F

NK/F (α) = det(Aα)

where Aα is the corresponding matrix for the F -linear map σ : K → K given
by σ(x) = αx.

With this definition, let us return to our previous example and evaluate
NQ3[

√
2]/Q3

(3 + 2
√

2). Choose the basis {1,
√

2} for Q3[
√

2] over Q3. Then

the linear map σ : Q3[
√

2] → Q3[
√

2] with σ(x) = x(3 + 2
√

2) gives us
σ(1) = 3 + 2

√
2 and σ(

√
2) = 4 + 3

√
2. So the matrix of σ is[

3 4
2 3

]
So

NQ3[
√
2]/Q3

(3 + 2
√

2) =

∣∣∣∣3 4
2 3

∣∣∣∣ = 1
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Most importantly, we can also check that NQ3[
√
2]/Q3

(1 +
√

2) = −1 since

the linear transformation given by x 7→ x(1 +
√

2) has matrix[
1 2
1 1

]
This reveals two important facts. The first is immediately obvious - the
norm of elements in the field extensions of Qp need not be non-negative. The
second requires some investigation - it seems that our new norm satisfies

NK/F (x)NK/F (y) = NK/F (xy)

which is indeed reassuring. But first, let us present alternative ways to
calculate these norms:

Theorem 5.4. Denote irred(α) as the irreducible polynomial for α over
Qp.
The definition for NK/F (α) is equivalent to:
1) NK/F (α) = (−1)na0 where n is the degree of irred(α) and a0 is its
constant term.
2) NK/F (α) =

∏n
i=1 αi, where αi are the conjugates of α = α1 over F .

Proof. We choose a convenient basis for K, an n-dimensional vector space
over F , namely the set {1, α, ..., αn−1}. With this basis, the matrix Aα has
the following form, which shows that det(Aα) = (−1)na0

0 0 0 ... 0 −a0
1 0 0 ... 0 −a1
0 1 0 ... 0 −a2
. . 1 ... . .
. . . ... . .
. . . ... 1 −an−1


By the product of roots formula, we know that

n∏
i=1

αi = (−1)na0

where αi are the roots of irred(α), which are the conjugates of α over F by
definition.

Corollary 5.4.1. The norm NK/F satisfies NK/F (x)NK/F (y) = NK/F (xy)
for all x, y ∈ K/F .
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Proof. Let a0, ..., an be the coefficients of irred(x) and let b0, ..., bm be the
coefficients of irred(y). So irred(xy) has constant term a0b0 with degree
n+m. Then

NK/F (x)NK/F (y) = (−1)na0(−1)mb0

= (−1)m+na0b0

= NK/F (xy)

Finally, we have the tools to extend the p-adic norm |.|p to finite exten-
sions of Qp.

Definition 5.3. Let K/Qp be a finite extension of degree n. Then for x ∈ K,
define

|x|K = n

√
|NK/Qp

(x)|p

as the absolute value of x which extends the p-adic norm on Qp.

In this definition, we move away from viewing elements of K/Qp as
vectors over Qp, since the absolute value is well behaved with respect to
multiplication. It easily follows by construction that |.| inherits satisfaction
of the norm axioms from the p-adic norm. However, one thing still remains
ambiguous. Is this extended absolute value still non-archimedean? We will
conclude this section with the following result:

Theorem 5.5. The extended absolute value |.|K over K/Qp is non-archimedean.

Proof. This result is highly non-trivial and is not a major focus of this
report, so it will be omitted. For a full proof, see page 152 of Goueva’s
P-adic Numbers - an Introduction[2].
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6 The Algebraic Closure - Qp

In our quest to construct a p-adic number system to rival the utility and
robustness of C, we don’t just want finite extensions of Qp. We need some-
thing much greater. We need the entire algebraic closure of Qp, that is Qp,
fully equipped with solutions to every polynomial. Firstly, it is apparent
that

Lemma 6.1. Qp is an infinite extension over Qp.

Proof. Qp[{ζi : i ∈ N}] where ζi are the primitive roots of unity is already
an infinite extension of Qp, and it a subfield of Qp. Hence Qp is an infinite
extension of Qp.

The astute reader would have noticed that in the construction of the
absolute value, we did not require the finiteness of K over Qp, nor did we
reference specific elements used to extend Qp to K (we simply required the
elements to be evaluted to actually be in K), so the absolute value naturally
extends to Qp.

However, there is an issue with Qp that can be easily overlooked. Although
we diligently constructed Qp as the completion of Q, it actually turns out
that

Theorem 6.2. Qp is not complete.

Proof. [1] In Q2, consider the sequence(
N∑
n=1

2n+1/n

)
N∈N

We note that 2n+1/n is a solution to the polynomial xn − 2n
2

= 0, so each
term in the sequence is in Q2. Also, for m, k ≥ N , we have∣∣∣∣∣

k∑
n=m+1

2n+1/n

∣∣∣∣∣ ≤ 2m+1/m = 2−m ≤ 2−N

so this sequence is cauchy. But we note that the denominator of the expo-

nents in
(∑N

n=1 2n+1/n
)
N∈N

becomes arbitrarily large, so we would require

polynomials of arbitrarily large degree and of arbitrarily many terms for

which
∑N

n=1 2n+1/n is a solution. Hence
(∑N

n=1 2n+1/n
)
N∈N

does not con-

verge in Q2 so Q2 is not complete.
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7 Complex P-adic Numbers - Cp

We have arrived at the final step of our construction - the complex p-adic
numbers. The remainder of this report will explore familiar functions under
Cp and their properties.

7.1 Exploring Cp

So far, we have constructed an algebraically closed field Qp from Zp, and
have extended the p-adic norm to this new field. However, the algebraic
closure of the complete field Qp is surprisingly no longer complete. There is
one more thing we must do to complete our construction of Cp, the p-adic
analogue of C.

Definition 7.1. Cp is the completion of Qp under the extended p-adic norm.

We note that it is not immediately obvious that Cp is algebraically closed.
It is a famous result in field theory that the completion of an algebraically
closed field is itself algebraically closed. This property is proven in Lawrence
Washington’s Cyclotomic Fields:

Theorem 7.1. Cp is algebraically closed.

Proof. Proven in page 48-50 of Lawrence Washington’s Cyclotomic Fields[4].

Now, we can define analogues to exponentiation and logarithms in Cp
by their series expansions. But first, let us review an important property of
series in the world of the non-archimedean p-adic norm:

Theorem 7.2. A series
∑∞

n=0 an converges in Cp iff limn→∞ an = 0.

Proof. If |an| → 0, then for any ε > 0 we have n ≥ N ⇒ |an| < ε. So∣∣∣∣∣
∞∑
n=0

an

∣∣∣∣∣ ≤ max(|a1|, |a2|, ...)

= max(|a1|, |a2|, ..., |aN−1|, ε)

Which is a finite value. Conversely, if
∑N

n=0 an converges to L as N → ∞,

then aN =
∑N

n=1 an −
∑N−1

n=1 an converges to L− L = 0.
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7.2 The Exponential Function - exp(x)

Definition 7.2. Define

exp(x) =
∞∑
n=0

xn

n!

This is analogous to the power series of ex in C. An interesting (and
somewhat inconvenient) property is that ex is not well defined for all num-
bers in its domain. In fact,

Theorem 7.3. The radius of convergence of exp(x) is no less than p−1/(p−1).

Proof. If this series converges for some x, then limn→∞
xn

n! = 0. In other
words,

lim
n→∞

ν

(
xn

n!

)
=∞

lim
n→∞

(nν(x)− ν(n!)) =∞

We see that

ν(n!) =

⌊
n

p

⌋
+

⌊
n

p2

⌋
+ ... <

n

p
+
n

p2
+ ... =

n

p− 1

Indeed, if ν(x) > 1
p−1 , we have ν(x) − ν(n!)/n > 0. Let this value be k.

Then limn→∞(nν(x)− ν(n!)) = limn→∞ kn =∞.

So we deduce that the radius of convergence of exp(x) is no less than
p−1/(p−1).

This fact is convenient as it lies between the discrete norm values p−1

and p0. We can compute that exp(a) is actually divergent if |a| = 1 since
limn→∞ ν

(
a
n!

)
= limn→∞ ν

(
1
n!

)
< 0 < ∞. So for odd p, exp(x) converges

for |x| ≤ p−1 and diverges for |x| ≥ 1. In C2, exp(x) is indeterminate for
|x| = p−1 and divergent for |x| ≥ 1.

It is notable that exp(pkn) with (p, n) = 1 is defined iff k ≥ 1 (k ≥ 2
for p = 2). Notably, exp(1) is undefined and exp(0) is defined.

21



7.3 The Logarithmic Function - log(x)

Once again, we borrow power series expansions from calculus to define:

Definition 7.3.

log(1 + x) :=

∞∑
n=1

(−1)n+1xn

n

Theorem 7.4. log(1 + x) has radius of convergence 1, and is divergent if
|x| = 1.

Proof. We will determine the convergence conditions for (−1)n+1xn

n as n →
∞, which is equivalent by Theorem 6.2. For (absolute) convergence, we
must have (similar to above)

ν(x)− ν(n)/n > 0

as n → ∞. But there exist an infinitude of n ∈ Zp where ν(n) = 0. So
we have ν(x) > 0. But the series is clearly divergent for ν(x) = 0 (observe∑∞

n=1(−1)n+1). In other words, log(1 + x) converges iff |x| < 1.

Notably, log(1 + x) is divergent for all x ∈ C×p .

We can extend this function by setting log(xy) = log(x) + log(y) for each
x, y ∈ Cp and log(p) = 0. It can be proven that log(1/n) = − log(n). In-
deed, now log(1) would be defined as log(1) = log(p) + log(1/p) = 0.

The following is a weaker version of Lemma 5.5 in Washington’s Cyclotomic
Fields[4], which states that for |x| < p−1/(p−1), then | log(1 + x)| = |x|. In
particular, if p = 2, we have |x| = p−1 ⇒ | log(1 + x)| < |x|.

Theorem 7.5. In Cp for odd p, if |x| < p−1, then | log(1 + x)| = |x|.

Proof. First, observe that for n ∈ Z, ν(n) ≤ logp(n), so |n|p ≥ p− logp(n) =
1/n. Now, for all n > 1, we have∣∣∣∣xnn

∣∣∣∣ ≤ |xn| 1

|n|
< np1−n|x| < 2 · 21−n|x| = 22−n|x| ≤ 20|x| = |x|

Hence
| log(1 + x)| = max(|x|, | − x2/2|, |x3/3|, ...) = |x|

as desired.
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Theorem 7.6. log(x) = 0 precisely at the values where x = pa/bζ, where ζ
is a kth root of unity and a, b ∈ Z with b 6= 0.

Proof. First, we verify that

log(pa/bζ) =
1

b
log(pa) + log(ζ) =

1

k
log(ζk) = 0

Now, suppose log(x) = log(1 + y) = 0. [We can assume that x is not the
multiple of a rational power of p so if follows that |y| < 1] (why? ). Choose

sufficiently large N such that |ypN | < p−1/(p−1). Then

xp
N

= (1 + y)p
N

=

pN∑
n=0

(
pN

n

)
yn

Then

|xpN − 1| ≤ max

(
|pNy|,

∣∣∣∣(pN2
)
y2
∣∣∣∣ , ..., |ypN |)

= max(p−1, p−1, ..., |ypN |)

= |ypN |
< p−1/(p−1)

Hence by the previous lemma, we conclude that 0 = | log(xp
N

)| = |xpN − 1|.
Hence x is a root of unity.

Using results from calculus, we can show that exp and log are inverses
of each other in the domain which they are defined. But recall that we ex-
tended log beyond its natural domain. So are these functions still inverses
of each other?

Surprisingly, we actually have that

Theorem 7.7. exp and log are not inverses of each other.

Proof. First, since exp was not extended, we naturally have log(exp(x)) = x
whenever log(exp(x)) converges. Indeed,

|exp(x)− 1| =

∣∣∣∣∣
∞∑
n=1

xn

n!

∣∣∣∣∣ < 1
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since each |xn/n!| ≤ |xn| · 1
|n!| <

p−n/(p−1)

p−n/(p−1) = 1. Thus exp(x)− 1 falls within

the radius of convergence of log(1 + x). Hence log(exp(x)) = x for all
|x| < p−1/(p−1).

But observe that exp(log(ζ)) = exp(0) = 0 6= ζ. As expected, ζ lies out-
side of log’s radius of convergence and violates the hypothesis that exp−1 =
log.

Lemma 7.8. For any prime p, the (p− 1)th roots of unity are distinct mod
p.

Proof. Let ζ be a primitive (p− 1)th root of unity, where p is prime. Then
ζ generates the cyclic group of the (p − 1)th roots of unity (Theorem 4.3),
which is isomorphic to (Z/pZ)× with isomorphism x 7→ x mod p. So ζ mod
p generates (Z/pZ)×, hence for any n ∈ (Z/pZ)×, we have (ζ mod p)k = ζk

mod p = n for some 1 ≤ k ≤ p − 1. Thus the (p − 1)th roots of unity are
distinct mod p.

This lemma allows us to formulate the following definition:

Definition 7.4. Given a ∈ Zp and prime p with p - a, define 〈a〉 = ω(a)−1a,
where, if p 6= 2, ω(a) is the distinct (p−1)th root of unity such that a ≡ ω(a)
mod p. If p = 2, ω(a) is the distinct 2nd root of unity such that a ≡ ω(a)
mod 4.

This is the notion of taking the “principal part” of a ∈ Cp. This is useful
since we always have that (for p 6= 2), 〈a〉 ≡ 1 mod p. Now,

Lemma 7.9. log(a) = log〈a〉

Proof.

log〈a〉 = log(ω(a)−1a)

= log(ω(a)−1) + log(a)

= −1

k
log(1) + log(a) (k =

{
2 if p = 2

p− 1 otherwise
)

= log(a)

Theorem 7.10. Given a ∈ Zp with p - a, we have 〈a〉x = exp(x log(a)) for
x ∈ Z.
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Proof. First by definition, Since 〈a〉 ≡ 1x ≡ 1 mod q, we have that νq(〈a〉x−
1) > 0 so |〈a〉x − 1|p ≤ p−1 if p 6= 2 and |〈a〉x − 1|p ≤ p−2 if p = 2. Thus

|〈a〉x − 1|p < p−1/(p−1)

Hence by the log and exp identities shown previously,

〈a〉x = exp log(〈a〉x)

= exp(x log(〈a〉))
= exp(x log(a)) (Lemma 7.8)

Definition 7.5. For all X,n ∈ Qp, define(
X

n

)
=

X!

n!(X − n)!

We will state without proof 2 theorems in functional analysis.

Theorem 7.11. Any continuous function f : Zp → Qp can be written
uniquely as

∑∞
n=0 an

(
X
n

)
with an → 0.

Theorem 7.12. Let r < p−1/(p−1) < 1. If f(x) =
∑∞

n=0 an
(
X
n

)
with |an| ≤

Mrn for some M ∈ Qp, then f(x) can be expressed as a power series with
radius of convergence at least (rp1/(p−1))−1 > 1.

Theorem 7.13. 〈a〉x converges if |x| < qp−1/(p−1).

Proof. Similar to above, we have that since 〈a〉 ≡ 1 mod q, νp(log〈a〉−1) >
0 for p 6= 2 and νp(log〈a〉 − 1) > 1 for p = 2, hence | log〈a〉| ≤ 1/q. For
〈a〉x = exp(x log(a)) to converge, we must have

|x log(a)| < p−1/(p−1)

|x| < qp−1/(p−1)

which completes the proof.

Corollary 7.13.1. We observe that if p 6= 2, then 〈a〉x converges when
|a| ≤ p · p−1 = 1. If p = 2, then it converges when |a| ≤ p2 · p−2 = 1. Hence
〈a〉x always converges if a ∈ Zp.
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We will confirm theorem 7.12 with lemma 7.13. We can write

〈a〉s = (1 + 〈a〉 − 1)s =
∞∑
n=0

(
s

n

)
(〈a〉 − 1)n.

By Theorem 7.13, since νq(〈a〉−1) > 0⇒ (〈a〉−1)n → 0, this representation
is unique. Let r = q−1 and M = 1. Then |〈a〉 − 1|n ≤ q−n = Mrn, so 〈a〉n
has radius of convergence at least (q−1p1/(p−1))−1 = qp−1/(p−1), so Theorem
7.12 and Lemma 7.13 agree in this case.
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8 Appendix

Code for constructing p-adic sequences using Hensel’s Lemma used in section
4:

def lift(a, p, f, n):

power = 1

ar = [a]

if f(a)%p!=0:

return []

while n>0:

for i in range(p):

modp = p**power

new = a+i*(modp)

if f(new)%(p*modp)==0 and new%(modp)==a%(modp):

a = new

break

power += 1

ar.append(a)

n -= 1

return ar
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